## <u>Q1</u>

The magnitude of the maximum resultant of two forces  $F_1$ ,  $F_2$  is 10 Newton and the magnitude of the minimum resultant of the two forces is 2 Newton. then  $F_1^2 - F_2^2 = \dots$ , when  $F_1 > F_2$ 

- a ) 20
- b) 24
- c) 8
- d ) 12

## <u>Q2</u>

If  $F_1 = 5$  Newton,  $F_2 = 4$  Newton act at a point, and  $\alpha$  is the angle between their lines of action of the two forces,  $\sin \alpha = \frac{3}{5}$  then the magnitude of their resultant =....,  $\alpha \in \left[0, \frac{\pi}{2}\right]$ 

- a)  $\sqrt{65}$
- b)  $\sqrt{11}$
- c ) 3
- d )  $\sqrt{73}$

# <u>Q3</u>

A regular quadrilateral pyramid, its volume 96  $cm^3$ , its height 8 cm, Then its base side length =.....cm

- a) 72
- b) 36
- c)6
- d ) 12

# <u>Q4</u>

A right circular cone, its base area 36  $\pi$  cm<sup>2</sup>, its height 8 cm,çthen its drawer length = .....cm

- a ) 12
- b)10
- c) 8
- d ) 6

<u>Q5</u>

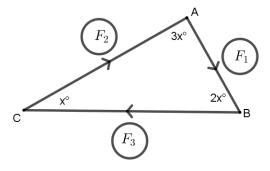
 $\overline{BC}$  is a uniform rod of length one meter and its weight (w) Newton is suspended from its two ends by two perpendicular strings their other end fixed at a point on the ceiling of a room, if the length of one of the two strings equals  $50\sqrt{3}$  cm, find the magnitude of the tension in strings in terms of the weight of the rod (w).

# <u>Q6</u>

Two forces are meeting a point the magnitude of their maximum resultant = 14 Newton and when the two forces are perpendicular the magnitude of their resultant = 10 Newton, then  $F_1 = \dots$  Newton,

 $F_2 = \dots$  Newton a) 6, 8 b) 9, 5 c)  $5\sqrt{2}$ ,  $5\sqrt{2}$ d) 5,  $5\sqrt{3}$ 

# <u>Q7</u>


The coplanar forces of magnitudes 1, 2,  $3\sqrt{3}$ , 4 Newton are acting at a point where the measure of the angle between the directions of the first force and the second force is  $\frac{\pi}{3}$ , the second force and the third force is  $\frac{\pi}{2}$  and between the third force and the fourth force is  $\frac{5\pi}{6}$ .

Find the magnitude and the direction of their resultant.

#### <u>Q8</u>

In the opposite figure:

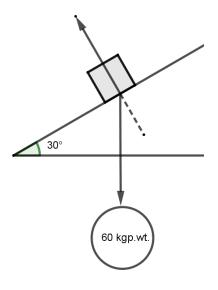
 $\Delta$  ABC is the triangle of forces of the three equilibrium forces that act at a point.



Then  $F_1: F_2 = ....$ a) 1: 2 b) 1:  $\sqrt{3}$ c) 2: 3 d)  $\sqrt{3}: 2$ 

#### <u>Q9</u>

Two forces of magnitude 8 and F Newton act at a point, the measure of the angle between them is  $135^{\circ}$ , if the resultant inclined with an angle of measure  $45^{\circ}$  to the force F, then:

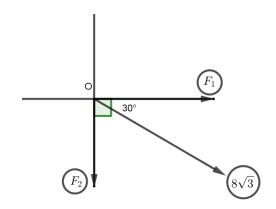

F =..... Newton a)  $8\sqrt{2}$ b) 8 c)  $18\sqrt{2}$ d)  $16\sqrt{2}$ 

## <u>Q10</u>

In the opposite figure:

The component of the weight in the direction of the line of the greatest slope =...... kg wt, the component of weight in direction perpendicular to plane = ..... kg wt.

- a )  $30\sqrt{3}$  , 60
- b ) 60  $\sqrt{3}$  , 60
- c ) 60 ,  $60\sqrt{3}$
- d ) 30 , 30 $\sqrt{3}$




<u>Q11</u>

Force of magnitude 8  $\sqrt{3}$  Newton is resolved into two perpendicular forces  $F_1$ ,  $F_2$ , then  $\frac{F_1}{F_2} = \dots$ 



b) 
$$\frac{1}{\sqrt{3}}$$
  
c)  $\frac{\sqrt{3}}{2}$   
d)  $\frac{1}{2}$ 



## <u>Q12</u>

A regular quadrilateral pyramid, the perimeter of its base is 16 cm and whose height 9 cm is put inside a container in the shape of a right circular cylinder, contains water. If the level of water raises  $\frac{21}{88}$  cm, Find the radius length of the base of the cylinder given that  $(\pi \simeq \frac{22}{7})$ .